Mouse MAELSTROM: the link between meiotic silencing of unsynapsed chromatin and microRNA pathway?
نویسندگان
چکیده
Meiotic silencing of unsynapsed chromatin (MSUC) is a key mechanism in spermatogenesis and a model system to study the dynamics of gene silencing. Here we show that MAEL, the ortholog of Drosophila's high mobility group box protein Maelstrom, is associated not only with the silenced XY body, but also with unsynapsed autosomes. Characterization of MAEL revealed that it interacts directly with the chromatin remodeler SNF5/INI1 and chromatin-associated protein SIN3B, which we also find localized to the XY body. This is the first time that a chromatin remodeler has been shown to associate with whole chromosomes. In addition, we show that MAEL is a component of the mouse meiotic nuage and its haploid cell counterpart, the chromatoid body. This is a site of accumulation of RNA and RNA processing enzymes, including proteins involved in the microRNA (miRNA) pathway. Furthermore, in the nuage, MAEL is present in a complex with germ cell specific MVH, an RNA helicase and Argonaute family members, MILI and MIWI. The presence of MAEL in these critical compartments of male germ cells and its interactions provide a link suggesting the involvement of the miRNA pathway in MSUC.
منابع مشابه
Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation
Chromosome synapsis during zygotene is a prerequisite for the timely homologous recombinational repair of meiotic DNA double-strand breaks (DSBs). Unrepaired DSBs are thought to trigger apoptosis during midpachytene of male meiosis if synapsis fails. An early pachytene response to asynapsis is meiotic silencing of unsynapsed chromatin (MSUC), which, in normal males, silences the X and Y chromos...
متن کاملUBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination.
Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 ...
متن کاملSPO11-Independent DNA Repair Foci and Their Role in Meiotic Silencing
In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY b...
متن کاملThe X and Y chromosome in meiosis: how and why they keep silent.
T he XX/XY sex chromosomal system of mammals, including human, challenges the chromosome pairing mechanism during male meiosis. Pairing and subsequent separation of homologous chromosomes generates haploid cells from diploid cells during the meiotic divisions. One of the basic requirements for recognition between homologous chromosomes is DNA sequence identity. Since the X and Y chromosome shar...
متن کاملA High Incidence of Meiotic Silencing of Unsynapsed Chromatin Is Not Associated with Substantial Pachytene Loss in Heterozygous Male Mice Carrying Multiple Simple Robertsonian Translocations
Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 15 15 شماره
صفحات -
تاریخ انتشار 2006